3.61 \(\int x^5 (a+b \tan ^{-1}(c x^2)) \, dx\)

Optimal. Leaf size=47 \[ \frac{1}{6} x^6 \left (a+b \tan ^{-1}\left (c x^2\right )\right )+\frac{b \log \left (c^2 x^4+1\right )}{12 c^3}-\frac{b x^4}{12 c} \]

[Out]

-(b*x^4)/(12*c) + (x^6*(a + b*ArcTan[c*x^2]))/6 + (b*Log[1 + c^2*x^4])/(12*c^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0308981, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {5033, 266, 43} \[ \frac{1}{6} x^6 \left (a+b \tan ^{-1}\left (c x^2\right )\right )+\frac{b \log \left (c^2 x^4+1\right )}{12 c^3}-\frac{b x^4}{12 c} \]

Antiderivative was successfully verified.

[In]

Int[x^5*(a + b*ArcTan[c*x^2]),x]

[Out]

-(b*x^4)/(12*c) + (x^6*(a + b*ArcTan[c*x^2]))/6 + (b*Log[1 + c^2*x^4])/(12*c^3)

Rule 5033

Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcTan
[c*x^n]))/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[(x^(n - 1)*(d*x)^(m + 1))/(1 + c^2*x^(2*n)), x], x]
/; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int x^5 \left (a+b \tan ^{-1}\left (c x^2\right )\right ) \, dx &=\frac{1}{6} x^6 \left (a+b \tan ^{-1}\left (c x^2\right )\right )-\frac{1}{3} (b c) \int \frac{x^7}{1+c^2 x^4} \, dx\\ &=\frac{1}{6} x^6 \left (a+b \tan ^{-1}\left (c x^2\right )\right )-\frac{1}{12} (b c) \operatorname{Subst}\left (\int \frac{x}{1+c^2 x} \, dx,x,x^4\right )\\ &=\frac{1}{6} x^6 \left (a+b \tan ^{-1}\left (c x^2\right )\right )-\frac{1}{12} (b c) \operatorname{Subst}\left (\int \left (\frac{1}{c^2}-\frac{1}{c^2 \left (1+c^2 x\right )}\right ) \, dx,x,x^4\right )\\ &=-\frac{b x^4}{12 c}+\frac{1}{6} x^6 \left (a+b \tan ^{-1}\left (c x^2\right )\right )+\frac{b \log \left (1+c^2 x^4\right )}{12 c^3}\\ \end{align*}

Mathematica [A]  time = 0.0132921, size = 52, normalized size = 1.11 \[ \frac{a x^6}{6}+\frac{b \log \left (c^2 x^4+1\right )}{12 c^3}-\frac{b x^4}{12 c}+\frac{1}{6} b x^6 \tan ^{-1}\left (c x^2\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^5*(a + b*ArcTan[c*x^2]),x]

[Out]

-(b*x^4)/(12*c) + (a*x^6)/6 + (b*x^6*ArcTan[c*x^2])/6 + (b*Log[1 + c^2*x^4])/(12*c^3)

________________________________________________________________________________________

Maple [A]  time = 0.024, size = 45, normalized size = 1. \begin{align*}{\frac{{x}^{6}a}{6}}+{\frac{b{x}^{6}\arctan \left ( c{x}^{2} \right ) }{6}}-{\frac{b{x}^{4}}{12\,c}}+{\frac{b\ln \left ({c}^{2}{x}^{4}+1 \right ) }{12\,{c}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(a+b*arctan(c*x^2)),x)

[Out]

1/6*x^6*a+1/6*b*x^6*arctan(c*x^2)-1/12*b*x^4/c+1/12*b*ln(c^2*x^4+1)/c^3

________________________________________________________________________________________

Maxima [A]  time = 0.983944, size = 65, normalized size = 1.38 \begin{align*} \frac{1}{6} \, a x^{6} + \frac{1}{12} \,{\left (2 \, x^{6} \arctan \left (c x^{2}\right ) -{\left (\frac{x^{4}}{c^{2}} - \frac{\log \left (c^{2} x^{4} + 1\right )}{c^{4}}\right )} c\right )} b \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arctan(c*x^2)),x, algorithm="maxima")

[Out]

1/6*a*x^6 + 1/12*(2*x^6*arctan(c*x^2) - (x^4/c^2 - log(c^2*x^4 + 1)/c^4)*c)*b

________________________________________________________________________________________

Fricas [A]  time = 2.58199, size = 115, normalized size = 2.45 \begin{align*} \frac{2 \, b c^{3} x^{6} \arctan \left (c x^{2}\right ) + 2 \, a c^{3} x^{6} - b c^{2} x^{4} + b \log \left (c^{2} x^{4} + 1\right )}{12 \, c^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arctan(c*x^2)),x, algorithm="fricas")

[Out]

1/12*(2*b*c^3*x^6*arctan(c*x^2) + 2*a*c^3*x^6 - b*c^2*x^4 + b*log(c^2*x^4 + 1))/c^3

________________________________________________________________________________________

Sympy [A]  time = 76.1698, size = 80, normalized size = 1.7 \begin{align*} \begin{cases} \frac{a x^{6}}{6} + \frac{b x^{6} \operatorname{atan}{\left (c x^{2} \right )}}{6} - \frac{b x^{4}}{12 c} + \frac{b \log{\left (x^{2} + i \sqrt{\frac{1}{c^{2}}} \right )}}{6 c^{3}} + \frac{i b \operatorname{atan}{\left (c x^{2} \right )}}{6 c^{8} \left (\frac{1}{c^{2}}\right )^{\frac{5}{2}}} & \text{for}\: c \neq 0 \\\frac{a x^{6}}{6} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(a+b*atan(c*x**2)),x)

[Out]

Piecewise((a*x**6/6 + b*x**6*atan(c*x**2)/6 - b*x**4/(12*c) + b*log(x**2 + I*sqrt(c**(-2)))/(6*c**3) + I*b*ata
n(c*x**2)/(6*c**8*(c**(-2))**(5/2)), Ne(c, 0)), (a*x**6/6, True))

________________________________________________________________________________________

Giac [A]  time = 1.12515, size = 63, normalized size = 1.34 \begin{align*} \frac{2 \, a c x^{6} +{\left (2 \, c x^{6} \arctan \left (c x^{2}\right ) - x^{4} + \frac{\log \left (c^{2} x^{4} + 1\right )}{c^{2}}\right )} b}{12 \, c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arctan(c*x^2)),x, algorithm="giac")

[Out]

1/12*(2*a*c*x^6 + (2*c*x^6*arctan(c*x^2) - x^4 + log(c^2*x^4 + 1)/c^2)*b)/c